
Page 6	 FoxRockX� January 2011

For the last four years, I've been working on a 
project that has grown to include a complex object 
hierarchy with many embedded collections. While 
VFP's collection class is quite useful, the debugging 
tools for collections are weak. In particular, there's 
no support for drilling down into collections. So I 
finally created my own tool. 
In the process of building the tool, I learned some 
interesting lessons. In this article, I'll show you 
the tool I built; my next article will talk about 
the process of building the tool and some of the 
problems I encountered.

Why an Object and Collection 
Inspector?
I've been developing a project with an object 
hierarchy built from scalar objects and collections. 
That is, many of the objects in this hierarchy have 
properties that point to collections. The collections 
contain different objects, some of which have 
properties pointing to collections, and so on. (I 
described this project in the July, 2010 issue. I wrote 
about VFP's collections in general in the November, 
2009 issue.)

From the beginning, debugging the collections 
was something of a pain. The VFP Debugger doesn't 
handle collections very well. While you can expand 
a collection object, doing so only shows the scalar 
properties, not the collection members. 

To see an individual member of the collection 
in the Debugger, you have to enter the path to that 
member into the Watch window. While that's not 
a big deal if you have a single collection with a 
handful of members, when you're working with an 
object hierarchy, the inability to drill down to see 
what you have is big.

So, I decided to build a tool that would let me 
drill down into collections. My original name for 
the tool was Collection Inspector, but after working 
on it and with it for a while, it became apparent that 
it's more general than just a Collection Inspector; 
it's an Object Inspector, too. You hand it an object 
reference and it lets you drill into that object and 
whatever it contains, as deep as the hierarchy goes. 

(From here on out, I'll refer to the tool as the Object 
Inspector, though its title bar reads "Object and 
Collection Inspector.")

Designing the Object Inspector
As I started to design the tool, it seemed apparent 
to me that I'd want a treeview of some sort to 
represent the collection and its members and 
provide drilldown capability. I soon realized that I'd 
also want a way of showing data for each member 
of the collection. A little thought made it clear that 
what I really needed was the set of Explorer classes 
that Doug Hennig wrote about in the November, 
2008, March, 2009 and May, 2009 issues. 

I also quickly identified three kinds of things 
for which I wanted to show data: collections, other 
kinds of objects, and scalar values (which can also 
be members of collections). 

In my next article, I'll cover various issues 
that arose as I learned to work with Doug's classes 
and figured out what I could and couldn't do in 
handling collections.

Using the Object Inspector
To use the Object Inspector, you call it with a reference 
to the object you want to inspect. Optionally, you can 
also pass the name of the object.

Figure 1 shows the Object Inspector as it opens 
for a collection called oCountries. The call that 
produced this display is shown in Listing 1; the code 
to create the collection is included in the downloads 
for this article as MakeCountryCollectionClasses.
PRG.

Listing 1. This call to the Object Inspector produces the display 
in Figure 1. 
DO Inspector.App WITH oCountries, "oCountries"

The whole point of the tool is the ability to drill 
into collections to see what's inside. When you do 
so, you get a list of all members. Each member is 
listed as Item[n] (where n is the item's index in the 
collection). If the item has a key, it's shown as well. 
Figure 2 shows the Object Inspector after expanding 
the oCountries collection.

Introducing the Object and 
Collection Inspector
Debugging collections in VFP is difficult. This new tool, written in VFP, gives you a way to walk 
through object hierarchies, including collections.

Tamar E. Granor, Ph.D.



January 2011	 FoxRockX� Page 7

When you click on a particular 
item, the right panel changes to 
show the details of that item. If it's 
an object, you see a list of properties 
and their values, as in Figure 3. 
When you drill into an object, as in 
the left pane of the same figure, you 
see any properties that reference 
other objects and collections, and 
you can drill into those things as 
well.

Collections can also contain 
scalar values, that is, items that are 
not objects. The Object Inspector 
handles those by showing the type 
and value in the right panel, as in 
Figure 4. 

In some hierarchies, it's possible 
to have a cycle of pointers. For 
example, object A has a property 
that points to object B, and object B 
has a property that points to object 
A. Sometimes, the cycle is direct, 
like the A-B example. At other 
times, the cycle is indirect, with 
more than two objects involved. For 
example, in the countries hierarchy 
shown in the figures, a country 

object has an oStatesProvs collection 
containing state/province objects. 
The state/province object has an 
oCountry property pointing back to 
the country object.

These cycles present a problem 
for the Object Inspector. If the tool 
just allowed you to drill down 
with each pointer, you could end 
up doing so infinitely. That is, you 
might drill into Canada, expand the 
oStatesProvs collection, and then 
drill into Nova Scotia. You could 
then click that province's oCountry 
property, which would show the 
Canada node again. Then, you could 
drill into that node, expand the 
oStatesProvs collection and again 
drill into Nova Scotia (or any other 
province). And so forth and so on.

Not only does it not make sense 
to let a user do that, but it presented 
technical problems in setting up the 
data. Therefore, any given object 
is shown only once in the Object 
Inspector's hierarchy (the first time 
it's encountered when assembling 
the data). When you reach another 
pointer to the same object, the right 

Figure 1. For a collection, the Object Inspector shows the count and then all the proper-
ties of the collection.

Figure 2. When you drill into a collection, each item is shown with its index number and, 
if it has one, its key.

Figure 3. Click on a member of a collection to learn more about it. For objects, the 
right panel shows the object's properties and their current values. In this figure, the 
oStatesProvs collection inside the object has also been expanded.

Figure 4. For scalar members of collections, the Inspector shows type and value.



Page 8	 FoxRockX� January 2011

panel tells you that the object appears elsewhere 
and gives you a link to return to it, as shown in 
Figure 5.

Some property values may be too long to 
display in the grid in the right panel (though the 
tool is resizable). You can double-click on any item 
in the Value column to open a Zoom window for 
that value. Figure 6 shows an example.

More to come
The current version of the Object Inspector is 
included in this month's downloads. But the tool 
is a work in progress. The biggest item in planning 

stages is the ability to refresh the tool. Right now, 
it's a static display; that is, it shows the hierarchy 
at the time you run it. If you make changes to the 

objects involved while the Object Inspector is open, 
it does not update. A future version will give you 
the ability to update on demand.

Once you've tried the Object Inspector, please 
feel free to suggest additional enhancements, 
though of course I make no promises as to whether 

I'll add them.
I expect to submit the Object Inspector 

to VFPX when it gets a little farther along. 
At that point, additional help in developing 
the tool will be welcome. 

Next time, I'll give you a look inside.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s 
Solutions, LLC. She has developed and enhanced 
numerous Visual FoxPro applications for 
businesses and other organizations. She currently 
focuses on working with other developers through 
consulting and subcontracting. Tamar is author or 
co-author of nearly a dozen books including the 
award winning Hacker’s Guide to Visual FoxPro, 
Microsoft Office Automation with VisualFoxPro 
and Taming Visual FoxPro’s SQL . Her latest 
collaboration is Making Sense of Sedna and 
SP2. Her books are available from Hentzenwerke 
Publishing (www.hentzenwerke.com). Tamar is 

a Microsoft Support Most Valuable Professional and one 
of the organizers of the annual Southwest Fox conference. 
In 2007, Tamar received the Visual FoxPro Community 
Lifetime Achievement Award. You can reach her at tamar@
thegranors.com or through www.tomorrowssolutionsllc.com.

Figure 5. When a hierarchy contains cycles, only the first occurrence of an object appears in the right panel. Subsequent 
occurrences give you a link back to the first instance.

Figure 6. You can zoom the value of any property in the right-hand panel by 
double-clicking it.


